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Electromagnetic instabilities in unmagnetized plasmas
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It is shown that local perturbations in nonuniform unmagnetized plasmas can give rise to linearly growing
electromagnetic fields on both electron and ion time scales. The plasma vorticity and compressibility couple
due to density inhomogeneity, giving rise to instabilities with partially transverse and partially longitudinal
characteristics in electron plasmas of.<w and in electron-ion plasmas fes,.<w as well asw<wp,
(wherew,, is the electron plasma oscillation frequendy is reconfirmed that the pure transverse modes due
to the thermoelectric term do not appear in nonuniform unmagnetized electron plasmas. Furthermore, it has
been found that the thermal fluctuations in a collisionless inhomogeneous electron plasma happen on a slower
time scale of the order of &k (wherec, is the ion sound spegdlt seems that in the presence of a steep
density gradient the ion acoustic wave becomes electromagnetic. Since the curl of electric field becomes
nonvanishing in the presence of a density gradient, any nonuniform plasma can have magnetic field fluctua-
tions in the limito < w,, as well. It is suggested that in the limit< ,, the ion dynamics becomes important
and a pure electron plasma model to study magnetic field instability is not useful. The estimate for the
magnitude of slowly and rapidly growing magnetic fields using the electron-ion plasma model in a special
range of parameters turns out to be of the order of megagauss, in good agreement with the experimental
observations.

PACS numbgs): 52.25.Gj, 52.35.Fp, 52.50.Jm

[. INTRODUCTION Z material plasma within the framework of local theory,
which requires«,<k (wherek, is the inverse of the density
Large magnetic field¢of the order of megagaustave gradient scale length,). Similar assumptions are used in
been observed in laser produced plasmas for some timglectron magnetohydrodynamics which also presents contra-
[1-5]. Several mechanisms have been proposed to undedictions[21]. It has also been pointed out that temperature
stand the cause of generation of these magnetic fieldgerturbations cannot give rise to pure transverse instabilities
[6—20]. Most of the theoretical investigations in this direc- [19]. The assumptions used to describe an incompressible
tion consider electron temperature perturbations to be impothermal wave withw,<w<wpe, V-v;#0 andV.j;=0
tant for the unstable pure transverse waves in an inhomogéwherev, andj, are the linear velocity and current pertur-
neous plasma, assuming the ions to be stationary. It ibations, respectivelydo not seem to be self-consistent.
generally believed that this mechanism of magnetic field In the present paper we discuss two plasma slab models.
generation is fast enough and even in the low-frequency limitWe show that a linear perturbation can give rise to electro-
ion dynamics is not important. At the same time in the low-magnetic instabilities having partially longitudinal and par-
frequency limit the electron displacement current is ignoredtially transverse characteristics in inhomogeneous unmagne-
which gives zero electron density perturbation. Much re-tized pure electron plasmas as well as electron-ion plasmas.
search on magnetic field generation is based on the therm®umerical values ob in the coupled dispersion relation in a
electric termVnyX VT, (whereVn, is the equilibrium den-  pure electron plasma show that the electron temperature per-
sity gradient andT, is the linear electron temperature turbation(with w<wge) corresponds to an instability on the
perturbation. In a collisionless electron plasma the low- ion time scale withw~cgk (where cg is the ion sound
frequency purely transverse perturbations are generally studpeed. Therefore, we must consider ion dynamics as well in
ied in the rangeawp, < w<wpe [Wherewye (wp) is the elec-  this limit.
tron (ion) plasma oscillation frequengy The oscillatory On the other hand, in inhomogeneous electron-ion plas-
magnetic instability in the high-frequency limif,e<w due  mas a linear perturbation presents a coupling of high-
to electron temperature perturbations has also been consittequency plasma waves, ordinary transverse waves, and
ered[15]. These low- and high-frequency perturbation mod-low-frequency electromagnetic waves near the ion acoustic
els have been applied to the plasmas of bwnaterials like  frequency [19]. Numerically calculatedw values of the
hydrogen and its isotopes, assuming the ions to be stationargoupled dispersion relation show that a rapidly fluctuating
Recently it has been shown that in a collisionless plasmanagnetic field(with w,e<w) and a slowly oscillating field
the thermoelectric term does not become a source for magwith w~c,k) can grow simultaneously in an electron-ion
netic fluctuations in the linear limif19]. Furthermore, the inhomogeneous plasma.
assumptions of divergence-free electron current and station- In both the above inhomogeneous unmagnetized plasma
ary ions do not present a realistic situation at least in a lowmodels the steady state is assumed to be maintained by ex-
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ternal forces like laser beams. Apart from this assumptioricity directly. Assuming the perturbations to be proportional
these models are general and just show that a linear pertue expi(k-r— wt), Egs.(7) and(8) give
bation in a nonuniform plasma slab can give rise to growing
magnetic fluctuations on both ion and electron time scales i w2
with real frequencies mainly neagk and w . (9?—c?V?)By=—"c(ik+ r,) X Ey, 9

In the next section we study the linear perturbations in an @
electron plasma including temperature fluctuations. In Se _ _
Il the coupling of transverse and longitudinal modes is in-CWhere““_K”X and i, = (1/no) (dno/dx).
vestigated in an electron-ion plasma. Section IV gives some
rough estimates of the order of magnitude of the generateg,
magnetic fields. Finally, in Sec. V we discuss these plasm
models and the numerical results in some detail.

If a pure transverse perturbation is considered wkth
kx, E;=—[(1/c)dA,, ]y satisfying V-E;=0, then Eq.

[0?= e = wpd(1=ign) Ay, =0, (10

Il. PERTURBED ELECTRON PLASMA whereq,=k,x,/k?. However, we expect that the transverse

We consider a pure electron plasma with stationary iongnd longitudinal modes can couple due to inhomogeneity as
having density and temperature gradients alongxtteis.  Eg. (9) suggests. Therefore, we take into account the electro-
There are no external electric or magnetic fields and the urstatic potential perturbatioth; as well by defining
perturbed current is zero in the static plasma. The set of basic
equations used is as follows: the equation of motion 1
Ei=—V¢i— EatAla (1D
mn(d;+v-V)v=—enE—-Vp, (1)
and for the sake of generality we considier (k,,k,,0) and
A1=(A1x,A1y,0) with Coulomb gaugev-A;=0. In this
case Eq(9) becomes

the continuity equation

an+V-(nv)=0, 2
2

the Poisson equation . L
q [07— €2~ 0B 1= i0n) JAy =i —2ck by, (12)

V-E=—4men, (3)
where B;=V X A; has been used. Equatidti2) suggests
the adiabatic temperature equation that the vorticity and compressibility can couple in nonuni-
form plasmas. Actually the longitudinal plasma waves and
3n(g+v-V)T+pV.-v=0. (4)  transverse ordinary waves can couple becausg# 0 in Eq.

(12). Both are high-frequency modes wiid},.< w. Electron
The equation of state is assumed to be the ideal gagplaw temperature perturbations can also take place because the
=nT. In addition to these we need electromagnetic equacompressibilityV - v,# 0. Later we shall notice that electron
tions, Faraday’s law thermal waves have a frequency near ion acoustic mades
~c¢k and do not contribute to magnetic fluctuations on the
electron time scale. Therefore, in electron plasmas a trans-

VXE=—dB, (5 verse mode withw, < w<w,, cannot exist because; #0.
To further eleborate this point we retalh and solve the
and Ampee’s law coupled dispersion relation analytically. Equatidn gives
A7 1 i[e , Ny 1
VXB= ?j‘l'E(?tE. (6) Vlz—z EEl‘thegon—o‘l'Engl (13
All of the variables used here have their standard meaningand
The curls of the equation of motion and Anmpts law give,
respectively, i [e n,
. V'Vlz_;(EV'EI—'_Utze(KT_'—gl)'gOn_O
IV X (NgVy) = =V X(NgEy) (7 , T,
+Ute(|k'92)-|-_ ) (14
0
and
where go=ik+rr, Kr=xiX, kr=(1dT)(dTo/dx), g;
(97— c?V?)By=—4mecV X (ngvy), (8  =ik—k,, andg,=ik+ k,. The continuity equation gives

where the subscripts 0 and 1 denote the background and n 1/e T

perturbed quantities, respectively. It is important to note that 2 T g, E4plgi— (15)
k ) 92 Eat Uted2 T

the pressure term disappears and does not contribute to vor- No a\m
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where a= w2+ vfegg. Using Eq.(15) in the Poisson equa- Wheregs=ik+ 3. Substitutingn, from Eq. (15) into Eq.
tion, we can obtain the relation between temperature anfl7), we obtain another relation betwe&n andE, , viz.,

electric field as

E:—[aV-E — w20, Eq]
To 477noevt2eg§ L
Equation(4) can be simplified as

le e )

(G0 + 020 G = — | — s By + 0500 Gr
2 tey2 3-|—O m3 1 ted0 4n0’

3 vieGo- O Ty
2t N gy T
_ ¢ E _Ut2e90'94 e 18
! o Y2 Eifs

whereg,=g;+ 3 k1. Then Eqs(16) and(18) give an equa-

tion in E; as follows:

$aV E1— 05 B 0?— 05 vi(0r 05) 0 E1— 05050 Bl [v105(0o- 0a) — avie(92-93) I(V-E;)=0.  (19)

InsertingE; from Eq.(11) into Eqg.(19) we obtain a relation between electrostatic and magnetic vector potentials, viz.,

. ) ) k iw
{30~ [Fopd 1100 + 30ik? = (Tor+iTa) J0? = (To +iTa)} 1= = L3 wpeun+ (S +iS)I Ay, (20
X

where

To= s b2k +
2r the pr(pr+ mn),

3
T2i = Utzek2 4qn+ EQT) )

3

_ 2 22 4
TOr_wpevtekyMn(EIU«T_Mn +Utek4Gr-

TOi = U:lek4Gi ’
3
S= w;evtzek2(§lu’T_ Mn) ’

3
Si=- wgevtzek2<§:“T_ Mn) Qn,

3

) 5 5 3
Cr=—Su7t srin

+40,(An—G7) — 13,

Gi=2(gn—07) —SpTmnlnt /'L'zl'

2 7
—HMn| On— EQT )

Kn KT Ky
Mn:?v MT:?! and QT:?MT-

—topu _ 2__/-L2
2 2 TMn™ M 2 T

3
4Qn_ EqT

The terms with coefficient3 and Sin Eq. (20), having
corresponding subscripts, represent the contributions of ther-
mal fluctuations. If these terms are dropped then @€)
represents linear coupling of electrostatic plasma waves with
electromagnetic ordinary waves through,#0 andu,#0.

In this case Egqs(12) and (20) give

[02— w3d(1=i0n) — 305K [ 02— c?k?— wi(1-iqy)]

k, K 2
:( szn) Wpe- (21

Let L= wpe(1—i0n) + Ye0 ik, LEn= wi(1-ig,) +c%k?,
andg,= kyKn/kzz (ky /ky)dn so that Eq(21) can be written

as
2_L2 2_L2
(‘” eS)(‘” | —q2. (22

2
wpe wpe

The coupling presented in E@22) is possible ifm/M
<q?2 so that the neglect of ion dynamics is justified. Com-
bined with the local approximation this becomes

1/2

Such a coupling of high-frequency transverse and longitudi-
nal waves seems to take place in a steep density gradient
electron plasma within a very narrow range of wavelengths.
When ion dynamics is also considered then this restriction is
relaxed. In that case the coupling predicted by &4) can

take place in a larger range of wavelengths in principle. If the
thermal fluctuations are also taken into account, then EQs.
(12) and(20) yield a sixth order polynomial im, viz.,
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2

3 6 3 H 3 2 4 3 ky . 4 2
20 +[(b—3za)+i(d+30n) Jwpew” ab+qnd+Yr+§@qn,un +i(ad—gyb+Y;) jwgco +[(aY,+d,Yi—h)

+i(aY;—q,Y,;+q,h)Jw=0, (24)
|

where account electron thermal fluctuations. Furthermore, the
_— growth rates do not depend much on the temperature gradi-
a=1+M7k", ent. We notice that such a magnetic instability cannot be

3 5 3 suppressed even with a uniform compressi®pg=0) of

b=[——+)\2 kY — = +=pur(p +M)H’ the plasma.
2 7P 2 2FTAT TN Figures 1a) and Xb) show the dependence of real fre-

quencyw, and imaginary frequency; upon the wave num-
berk for both the examples 1 and 2. The growth rates of the
high-frequency electromagnetic waves are very large and
hence nonlinearities appear to be very important.

3 2 12 3
dZEQn"')\Dek 4Qn+EQTa

J 3
y
h= H)\ZDekZQn<§MT_Mn>a
X
Ill. PERTURBED ELECTRON-ION PLASMA

3
Yr:)\zDekZGr+)\%ek§Mn(E:U’T_/'Ln>i Here we study linear perturbations in an unmagnetized
nonuniform electron-ion plasma without ignoring the elec-
tron inertia. For simplicity we assume electrons to be adia-
batic (Vpe1~ vTeoVNer) With the local approximation, and

As an illustration we solve Eq24) numerically for two ions to be cold. In Refl19] only the low-frequency électro-

examples of laser-produced D-D plasmas. Let example 1 bt agnlenf[: instability was |n\éeftlgl)at¢d.tlrln thell'rlmtf]wpe ¢
No~107%° cm 3, Ty~100 eV [17], and example 2 ba, e electrons were assumed to be isothermal. In the presen

~102 cm 3, Ty~ 1 keV[16]. There are six complex con- study we solve the coupled sixth order dispersion relation

jugate roots of this dispersion relation. Three of them turn

out to be growing in numerical solutions. This necessitates a 225 Wr/Wpe 3.5

few comments. 3.0x10
First, one of the complex roots corresponds to the longi-

tudinal plasma wave that looks artificially unstable in this

hydrodynamic model. It is well known that this wave suffers

from Landau damping due to wave-particle interaction in o

both the long and short wavelength limtsp.k<<1 or 1 =

<\peck [22]. We are using fluid theory and hence work

within the limit Apk<<1. If the kinetic model is used the

plasma wave will be damped even in an inhomogeneous

Yi = )\éek4Gi .

plasma due to wave-particle interaction. Some interesting £-0 1 0“62
limits on the plasma and perturbation parameters may also ]
appear for the instability of high-frequency transverse

modes. However, this aspect is beyond the scope of the .2 25 35
present investigation. 6.0x10 (b)

Second, the real frequency of the electron thermal wave in
nonuniform plasmas turns out to be near the ion acoustic
frequency. Therefore we discard these solutions in the con-
text of the electron plasma.

Third, in the stationary ion case only the high-frequency
transverse wave becomes unstable due to density inhomoge-
neity. The linear growth rate is very large and therefore the
nonlinearities can come into play very quickly. Nonlinear 0
study of such a perturbation may give an increasing magnetic 0.0 w, /W 1.0x1
field on a slow time scale as well. However, within the linear tope
limits we do not find a growing magnetic perturbation with  F1G. 1. The realw, (solid curvé and imaginaryw; (dashed
w<wpe in a stationary ion plasma. The numerical solutionscyrve frequencies of fast electromagnetic waves in pure electron
of the coupled dispersion relation E(R4) show that the plasmas are plotteth) for example 1 withx,~5x 10° cm™* and
thermal wave has a real frequency of the ordewpf-ck  k,~4x10* em™2, (b) for example 2 withx,~2x10* cm™* and
and therefore ion dynamics cannot be ignored if we take intd,~4x10° cm™.

@
~<
>
L 3

=2
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and find that electromagnetic instabilities can occur on both Assuming the same perturbation geometry as that used in
electron and ion time scales. Since the electrons are consithe case of an electron plasma with the electric field of Eq.
ered to be adiabatimt29~ YeTo/me and y=3 for the ideal  (11), the coupling of compressibilities and vorticities of elec-
gas. tron and ion fluids yields

2
. . . Knk
{{w?=(1-igp) 05](0?—v{k?) = (1=igy) 05w} @?— k2= (1—ig,) w5 — ( %) wii( 2w~ wivik?)=0,

(29

wherews;= w)+ w5 . Equation(25) is the same as E419)  whereQ= 0,05/ (27w, +qnwse). In terms of the magnetic

of Ref.[19] which gives a stable low-frequency electromag-field B; we can write this as

netic mode in the limitw<wpe With o, ~csk and k,=0.

This mode can become unstablekif#0. Since it is not a ckTo kyk

purely electrostatic mode we avoid calling it a modified ion B4~ ew, k_x| |

acoustic mode. If the ion contribution is dropped using

<wpe, then Eq.(25) reduces to Eq(21). For the case of low frequency perturbation$<wj. Eq.
We note that if we study the linear perturbations in an(12) can be approximated as

inhomogeneous electron-ion plasma in a more natural way

with m/M # 0, there appears an electromagnetic wave near ¢k, To ey

w~c¢k. Furthermore, in the presence of a density gradient Agy~I S g-r_o-

the high-frequency ordinary waves can couple with these

low-frequency extraordinary modes. The free energy stored\gain we can write this in terms @, as

in the form of the density gradient can enhance the electro-

magnetic fields due to plasma convection. Both the high- and ck (k,k To

low-frequency electromagnetic waves can become unstable. |B4|~ ﬁ(kL ?) |qn]

We note also that for the same plasma parameters as have X

been used in the two examples of electron plasmas and for

similar perturbation wavelengths the high-frequency and 3‘0,(,52

low-frequency electromagnetic waves can couplemffiv (a) e

#0 is used in electron-ion plasmas. .,
Figures 2a) and 2b) show the instabilities of linear elec- .

tromagnetic perturbations on ion time scales in examples 1 3

and 2 of laser-produced plasmas with~ ck and w;<<cgk. ~ ¢

The high-frequency wave in electron-ion plasmas has a simi- =

lar behavior to that found for the case of pure electron plas- /

mas in Figs. 1a) and 1b), but in the electron-ion plasma /

both the high-frequency and low-frequency electromagnetic 4.0 L _6

modes are coupled and grow on electron and ion time scales. 0.0 Wi 7 Wpe 3.0x10

ety
To |

(27)

(28)

ety
To

: (29

5.0 Wy /Wpe 7.0 10

-3
215 Wi/ Wpe 2.5x10
6.0x10 7
(b} 4

IV. ESTIMATE OF B FIELD MAGNITUDES

Direct estimation of the magnitudes of the magnetic fields
produced as a result of linear perturbations is difficult. How- /
ever, if we express the magnetic field in terms of the elec-
trostatic potential then we can make some estimate of the
magnitudes by assuming some initial electrostatic energy
fluctuation relative to the plasma thermal energy, which is !
given by T,. Let w=w, +iw; (Wherew, and w; are the real /
and imaginary parts, respectively, of the perturbation fre- /

e L : 9.0
quency and w;< w, within the limits of linear theory. Then 0.0 w; /
in the case of high-frequency perturbations we can cuée '
~w§e(1+ A%k?) in Eq. (12) to obtain FIG. 2. The realw, (solid curve and imaginaryw; (dashed
curve frequencies of slow electromagnetic waves in electron-ion
ck plasmas are plotteth) for example 1 withk,~2X10° cm™ ! and
Agy~ “YQ¢,, (26)  kx~1.6X10" cm*, (b) for example 2 withk,~2x 10" cm™* and
wy ky~4X10° cm L,

k)l}‘De

-5
wpe 2.0x10
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whereS=(w,+iw;)(—a+iq,). we have to consider ion dynamics as well. Linear perturba-
Let us consider the case of example 1 to see the order dions of an electron-ion plasma yield a sixth order polyno-
magnitude ofB; fields produced. The real and imaginary mial in w. There are two low-frequency and two high-
frequencies of the high-frequency unstable wave are found tfrequency electromagnetic modes that remain stable if there
be w,~2.8w,, and w;~210 3w, corresponding tok,  is no propagation along the axis. One slow and one fast
~5x10° cm * and k,~k,~4x 10" cm™*. Then Eq.(27)  electromagnetic modes can become unstable with a negative
gives component of phase velocity {,),<0 in the x direction.
ed The two conjugate modes with () ,>0 are damped. Since
|B,|~(1.8% 104)1__1. (30) k,>0 is assumed, only the solutions with ),<0 can
0 become unstable, which corresponds to the situdjenO.

Assuming the initial electrostatic perturbation to be aboutThat is, the modes propagating in the opposite direction to

1% of the background thermal energy, we obtida|~ 180 the (_jensity gradient fow>q can grow Que to plasma con-.
G. If the growth rate is taken into account vection along the perturbation, giving rise to large magnetic
’ fields. If we take into account the entropy increase, the prob-

|B1| ~180 exgw;t). (31 lem becomes very interesting but complex. The density per-
turbation due to compressibility and the plasma vorticity can

In t=1X10"" s this initial perturbation can grow to the couple to generate these instabilities. In the presence of den-

magnitude of about 1 MG. _ sity inhomogeneity the electrons do not follow a Boltzmann

F(3r4 a slowly growing Eief'eld we have w,~(3.2  gjstribution even on a slow time scale. In the presence of a

X107 ) wpe andw;~(2.3X10 "wpe, cormesponding to,  density gradient the curl of the electric field is finite and the

szi ?0’3 cm?, k~1.6x10° cm %, and ky~4.3X 10* magnetic perturbations do not allow electrons to move

cm " in example 1. Then Eq29) gives freely, as they can under the influence of an electrostatic
potential only. Therefore electron inertia becomes important.

. (32 In this situation a slow electromagnetic unstable wave ap-
pears, which couples with the high-frequency transverse
modes.

The solutions also show that one of the longitidinal
plasma modes can grow. This unphysical result is due to the

explwit). (33 simplification of the fluid model which cannot take into ac-
count the effect of Landau damping. Landau damping can

We notice that as in the previous case few,/T,|=0.01, have an important effect on the instability criteria of electro-

|B;|~1x10° G in about a nanosecond. Similar results aremagnetic modes as well, because electrostatic and magnetic

|B;|~(5.4x 10‘5)6%(’l
0

It grows exponentially as

|B1|~(5.4% 105)‘6%'51
0

obtained if we use the parameters of example 2. vector potentials are coupled. Therefore a kinetic treatment
would be very useful in the present investigation.
V. DISCUSSION If the large growth rate of the high-frequency transverse

) ) wave predicted by fluid theory remains of the same order of

It has been shown that linearly fluctuating electromag-magnitude in the kinetic treatment, then nonlinear effects
netic fields can grow on both ion and electron time scales i qy1d also be studied. A nonlinearly modulated electromag-
an inhomogeneous unmagnetized plasma slab. A density gratic wave may evolve slowly even in an electron plasma.
d@ent is required_ for the coupling of transverse an_d IO_ngitu'Therefore we think that magnetic perturbations can grow on
dinal modes which has been assumed 1o be maintained tjsyeveral temporal and spatial scales in an unmagnetized inho-

external conditions. The electroq temperature perturbatlorrlqogeneous plasma. Furthermore, in the linear limit the ei-
can generate a thermal wave having real frequency near tha S
envalue problem along the direction should be solved

of the ion acoustic wave. Therefore, pure electron plasmg. . o
with appropriate boundary conditions.

models are not applicable for the study of such a slow per- Th . o | h h inh
turbation. Moreover, it is found that such a thermal wave is | "€ Presentinvestigation also shows that any inhomoge-
eous plasma can support electromagnetic linear perturba-

not a pure transverse mode. The electron compressibilitg 2 L
contributes to the electron temperature perturbation andOnS: Therefore, the seed of a magnetic field always exists in

hence the role of the electrostatic potential and the densitponuniform plasmas. This may explain the initial magnetic
fluctuation cannot be ignored. However, in a pure electrorield generation in space plasmas like planets, stars, etc.
plasma the high-frequency longitudinal and transverse waves

can couple in the presence of a density gradient agZq.

shows. The two slow thermal modes are artificially coupled ACKNOWLEDGMENTS
with the high-frequency waves in Eq24). The numerical
solutions for both the plasma exampl@$ and(2) show that One of us(H.S) would like to thank the Japan Society for

the thermal wave is not a high-frequency electron wave withthe Promotion of Scienc€)SP$ for financial support and
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